U.S. DOE's "Recycling End-of-Life Vehicles of the Future" Program

E.J. Daniels

<u>edaniels@anl.gov</u> (630) 252-5279

Argonne National Laboratory

Objective of the OATT/LWM* Recycle Program

- To ensure that all materials/components can be costeffectively recycled
- To ensure that materials are not deselected for the lack of recyclability

*U.S. DOE's Office of Advanced Transportation Technology/ Lightweight Materials Program

Automotive Recycling

- 75% of automotive materials, primarily metals, are recycled
- The other 25%---about 5 million ton/yr of shredder residues, each, in North America, Europe and the Pacific Rim are not recycled
- Advanced designs and materials present new recycling challenges

A Roadmap for Recycling ELV's of the Future Prepared in May 2001 Key Barriers Information Technology Markets May 25, 2601 Nay 25, 2601

"Recycle Roadmap"

- Objective of the "Roadmap": to provide overall direction to the OATT recycle program
- Workshop held in Sep 2000; workshop facilitated by Energetics
- Roadmap completed in May 2001 (http://pe.es.anl.gov)

"Recycle Roadmap" Workshop Attendees

- Albany Research Center
- The Aluminum Association
- American Plastics Council
- Argonne National Laboratory
- Automotive Parts Rebuilders Assoc.
- DaimlerChrysler Corp.
- Department of Natural Resources, Canada
- Ford Motor Co.
- General Motors Corp.
- Institute of Scrap Recycling Industries
- Massachusetts Institute of Technology
- Oak Ridge National Laboratory
- Rochester Institute of Technology
- Steel Recycling Institute
- Sandia National Laboratory
- US DOE

Challenges Impacting Auto Recycling in 2020

- Economic value of recovered materials and components
- Material content of vehicles
- Competing vehicle design requirements
- Capability to separate and sort material
- Hazardous material and contamination
- Capital availability to build infrastructure
- Materials supply
- Regulations impacting recycling
- Consumer opinion

Roadmap Recommendations

- The recyclability of ELV is presently limited by the lack of commercially proven technical capabilities to cost-effectively separate, identify and sort materials and by the lack of profitable post-use markets
- Development of technology to recycle today's materials will provide the basis for recycling of future materials
- Focus should be on post-shred technology demonstration
- Industry-wide collaboration is needed
- Worldwide technology needs to be tracked and information needs to be disseminated to users

Five-year R&D Program Plan Developed

- Goal: Maximize Sustainable Recycling of Current and Future Automotive Materials
- Elements of the Plan
 - Baseline Technology Assessment
 - Materials Recovery Technology Development and Demonstration (includes materials for thermo-chemical conversion)
 - Recovered Materials Performance and Market Evaluation
- Funding
 - ~ \$3 Million per year, 50% govt./50%industry
- Research Agreement
 - Argonne
 - USCAR's Vehicle Recycling Partnership
 - American Plastics Council

Path Forward: Fiscal Year 2003 Action Items

- Review with EU, Japan and others to identify a "common platform" ---establish basis for collaboration
- Initiate Baseline Assessment of existing and emerging ELV technologies---establish WEB-based information system
- Support demonstration of materials recovery technology
 - Salyp thermo-plastics sorting technology
 - Argonne froth-flotation technology
- Evaluate technology for removal/control of substances of concern
 - Comparison of surfactants for removal of PCB's

Conclusions

- As the complexity of automotive materials and systems increases, the technical challenge to recycle these materials and components increases
- Ultimately, any new technology developed in response to these changes must have minimal risk:
 - Proven cost-effective at full-scale
 - Proven markets for products
 - Regulatory barriers removed/transactions costs minimized